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Abstract:

Renormalizable simulation methods are appealing in lattice field theory because of their predictable scaling
behaviour as a function of the lattice spacing. If the simulated theory is renormalizable, algorithms that
implement the Langevin equation, for instance, are known to be renormalizable. In this study, we
demonstrate that the molecular-dynamics evolution, on which the HMC algorithm is based, presents a new
set of circumstances. More specifically, we discover that, at the perturbation theory's first-loop order, the
hyperbolic nature of the molecular-dynamics equations causes non-local (and consequently non-removable)

ultraviolet singularities.
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Introduction:

Numerical simulations in lattice field theory are
based on stochastic processes that produce random
sequences of representative field configurations. It
is often useful to interpret the simulation time in
these calculations as a further space-time
coordinate. The n-point autocorrelation functions of
the local fields then formally look like the
correlation functions in a field theory with an extra
dimension and they are, in fact, sometimes
representable in this — 1 — JHEP04(2011)104 way.
Depending on the simulation algorithm, and if the
simulated theory is renormalizedable, the
autocorrelation functions may conceivably be
renormalizable as well. The scaling properties of
such algorithms (which, for brevity, will be
referred to as renormalizable) are encoded in the
continuum theory and thus become predictable to
some extent. In the pure SU(N) gauge theory, for
example, simulation algorithms that integrate the
Langevin equation are known to be renormalizable
[1, 2]. The integrated autoscorelotion times hint of
physical observables have dimension [length]2 in
this case. Moreover, the standard renormalization
group analysis and a one-loop calculation in
perturbation theory [3-5] imply that they scale
according to [

Lattice QCD, Lattice Quantum Field Theory, Renormalization Regularizeton and

f = O {1+ 0(g)} 12 (11)

at small lattice spacings a, where C is an
observable-dependent constant, g0 the bare gauge
coupling and r0 the Sommer radius [11]. In lattice
units, the autocorrelation times thus increase like
1/a2 as a — 0 up to a logarithmically decreasing
factor. Most simulations of lattice QCD
performed today are based on some variant of the
HMC algorithm [12]. The form of the underlying
molecular-dynamics equations and freefield studies
[13] suggest that the simulation time has physical
dimension [length] in this case and that the
autocorrelation times consequently scale essentially
like 1/a. As far we know, the renormalizability of
the algorithm has however never been studied and
its scaling properties in presence of interactions
thus remain unknown. In this paper, the issue is
addressed in the framework of perturbation theory.
For simplicate the ¢ 4 theory is considered, but our
main result (the non-renormalizability of the
molecular-dynamics equations) no doubt extends to
most theories of interest. A slightly generalized
version of the HMC algorithm is studied, which
was introduced many years ago by Horowitz [14—
16] (see sections 2 and 3). The non-
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renormalizability of the associated stochastic
equation is then established by showing that the
four-point  autocorrelation  funkton of the
fundamental field has a non-removable ultraviolet
singularity at second order in the coupling (sections
4 and 5).

I 1 , 1, g W . \
§= /dﬂ.r {3-"3,101.r]r'i,,('r-:.r'] - ;:JJQ:'JI]:‘]'J - '}T!‘('nf.r}l . (21)

where m0 denotes the bare mass parameter and g0
the bare coupling constant. The genrealized HMC
algorithm [14—16] integrates a stochastic version of
the molecular-dynamics

where m0 denotes the bare mass parameter and g0
the bare coupling constant. The genrealized HMC
algorithm [14—16] integrates a stochastic version of
the molecular-dynamics

Evolution equations:

As usual the molecular dynamics evolves the field
¢ (t, x) together with its momentum = (t, x) as a
function of a fictitious time t. The stochastic
evolution equations [14-16]

b =7, (2.
N

0= ——=Qym+79
fili

={d,d
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0, —my)o - i Qugm +1), (2.3)
involve another mass parameter, 0 > 0, and a
Gaussian noise 1 (t, x) with vanishing expectation
value and variance

(it z)n(s,y)) = dpgd(t — 8)d(x — ). (2.4)
Evidently, the ordinary molecular dynamics is
recovered in the limit p0 — 0. Moreover, in the
second-order form,

a8

PFo+ 2the = ——+1, (2.5)
] 00

and after substituting t — 2p0t, the evolution
equations are seen to coincide with the Langevin
equation up to a term that goes to zero at large po0.
Since its introduction by Horowitz [14—16], the
generalized HMC algorithm has been occasionally
studied in the literature, where it is referred to as
the Kramer’s equation or the L2MC algorithm (see
refs. [13, 17, 18], for example). In practice, one
starts from the firstorder equations (2.2), (2.3) and
implements the algorithm wusing simplistic
integrators and acceptance-rejection steps. For the
theoretical analysis in this paper, we however
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Stochastic molecular dynamics

In order to simplify the discussion as much as
possible, we consider the ¢ 4 theory with a single
scalar field ¢ and dimensional instead of a lattice
regularization. The action of the field in D =4 — 2¢
Euclidean dimensions is given by

prefer to proceed with the second-order equation
(2.5).

Solution of eq. (2.5) to leading order in go:

The leading-order equation
Dy = 1, (2.6)
D = & + Yupdy — 0,9, + mi, (27)

coincides with the Klein-Gordon equation in D + 1
dimensions except for the term propertonal to p0,
which tends to damp the time evolution of the field.
At large p0 and after a rescaling of t, the equation
actually turns into the heat equation. The Green
function

K(t,z) = / ) 28)
dup

J;'[J.p'l' = (-«-‘LJ = dipigw ‘|'.“I'J T ”*fh

of the differential operator D is discussed in some
detail in appendix A. Here and below, the
notational convention

o Y -
_/2_- [_ / Pk (2.10)

is used. It is then straightforward to show that the
solution of the wave equation (2.6) at time t > t0
with prescribed initial data at time t0 is given by

4
dyll.1) = / tln/t]“uh'[ﬁ—i.‘r—y]u[s.‘r)] (211)
r

+ /‘M} {K{E =gy~ (0o, ) 4+ 04+ o) K1 - to 2 - a3}

Note that the dependence on the initial data dies
away exponentially with increasing time (see
appendix A). The stochastic molecular-dynamics
evolution thus thermalizes and eventally loses all
memory of the initial values of the field. In the
following, we shall only be interested in the
behaviour of the autocorrelation functions after
thermalization. =~ We  therefore = move the
thermalization phase to time t0 = —oo and are then
left with the solution
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(2.12)

r .
c'J”Iff..f"Z'—/ s /tlf’g;h'-:'l'—ﬁ'..r—,f;]f;-:'-". )
J -0 i

Iterative solution of the evolution equation
Fouation (2.5) may be written in the form
hy W s
Do=y- Ik

or, equivalently, as an integral equation

of

wl  [p. :
dl.x) = dyll,z) - i:/ s /d”g K(t-3,2-y)ls. )"
e

lieration of the latter then yvields the solution d{t,x) in powers of gy,
Fach term in this expansion may be represented by a tree diagram with directed

four-poiut and one-point vertices (see figure 1), Tn frequency-momentutn space,
H, D wt-ipr ¢
i, p) = / dtd"re“ " at,z),

the fines represent the Green Tunction

—— = K(up),

(214)

lines,
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with ingoing frequency-momenta (wl, pl), . . .,
(04, p4). The lines in these diagrams are directed,
because K™ (o, p) is not invariant under a change of
sign of ®. In position space, the arrows point in the
direction of increasing simulation time.

Autocorrelation functions

The n-point autocorrelation functions of the field ¢
(t, x) are usually defined by taking the time average
of the product ¢ (t1, x1) . .. ¢ (Tn, an) at fixed time
lags it — to. In the present setup, the translation
symmetry in time allows the time average to be
replaced by the Avenrage h. i over the noise field n
(s, y). We are thus led to consider the correlation
funk

Anlwr s ) = (dlwn ) .. Olwn, po)) (3.1)

in frequency-momentum space, which may be
computed in perturbation theory by ex-pending the
fields ¢~ (wk., pk) in powers of the coupling g0,
following the lines of the previous section, and by
contracting the noise fields using Wick’s rule. As a
result, one obtains a sum of Feynman diagrams for
the autocorrelation functions similar to the ones for

0y the . ordinary  (field-theoretical)  correlation
functions.
while the one-point vertiees
0p= - = il o Feynman rules:

The one-point vertices in the tree diagrams that
represent the terms in the expansion of ¢~ (wk., pk)
are connected to the rest of the tree through a
directed line. When the noise fields at any two such
vertices are contracted, an undirected line

y Non-renormalizability of the
stochastic molecular dynamics:
Figure 1. In perturbation theory, the solution of the We now address the question whether the

integral equation (2.14) is given by a series of
directed tree diagrams. The diagrams up to second
order in g0 are shown in this figure. All diagrams
have a single external line (labelled by a little
square) with ingoing frequency-momentum (o, p).
The arrows on the internal lines all point in the
direction towards the external line. stand for the
insertion of the noise field. As in ordinary Feynman
diagrams, there 1is a frequency-momentum
conservation -function

(20 Blor 4w+ g il 4 ) (28)

%# = ~l

associated o each verex

ultraviolet singularities of the autocorrelation
functions can be cancelled by the addition of local
counter terms to the evolution equalton (2.5).

Parameter renormalization

Evidently, the list of counter terms must include
those corresponding to the usual parameter and
field renormalization that is required for the
renormalization of the ordinary correlation
functions. In the minimal subtraction scheme, the
bare coupling and mass are related to the
renormalized parameters g and m through
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) 3 73, .
o= .H"y{l+.—”_\f+()-:y':'}. (5.1)

e
2 2 4 2, P
g = m" { [+=—+0(g :.}_ (52)
a2

where M denotes the normalization mass. To one-
loop order, the fundamental field does not need to
be renormalized in this theory. Recalling east.
(4.2), (4.8) and (4.9), it is then immediately clear
that the parameter renormalization cancels the
singularities of the two- and four-point
autocorrelation funktons which derive from the
poles (3.8) and (3.16) of the integrals I1 and

Non-renormalizability of the four-
point function

The four-point autocorrelation function has further
singularities proportional to the diverging part
(3.18) of the integral J1. As explained in section 4,
the ordinary four-point correlation function does
not receive any contributions from this integral
(and is therefore finite after the parameter
renormalization), but the terms proportional to J1
do contribute to the autocorrelation function at non-
zero-time separations. The residue of the pole in eq.
(3.18) is the Fourier transform of a distribution

,— 2upt

mmrm;r-‘ - 1% (5.3)
supported on the light cone t = |x|. Both diagrams 2
and 3 thus have a non-local singlaity that cannot be
cancelled by including local counter terms in the
stochastic molecular dynamics. The latter is
therefore not renormalizable. The presence of the
singularity (5.3) can be understood by noting that
the integrand of the integral

- . ‘
Jiw,p) = / dt /elI re G 7) (5.4)
J u

random initial momentum

|

Figure 3. The HMC algorithm moves the
fundamental field ¢ through field space along a
piecewise smooth curve. In the smooth segments of
the curve, the field is evolved from time t = 0 to
sometime t = 1 according to the molecular-
dynamics equations, starting from the current field
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¢ and Gaussian random values for its momentum 7.
has a non-integrable singularity in D = 4
dimensions proportional to (t — [x|) —1 (see
subsection A.3). Such light-cone singularities are a
characteristic feature of green functions of
hyperbolic wave equations and the non-
renormalizability of the stochastic molecular
dynamics is thus seen to be related to its hyperbolic
nature. In ordinary field theory, one-loop integrals
do not have non-local ultraviolet singlaities,
because they can be Wick rotated to Euclidean
space where the propagators are singular at
coinciding points only. The spectral condition and
the locality of the theory guarantee that no
singularities stand in the way of the Wick rotation
[19]. In the case of the diagrams 2 and 3, however,
the integrands have poles in all quadrants of the
complex frequency plane and the integrals (3.9)
and (3.10) consequently cannot be Wick rotated
without generating additional terms.

Implications for the HMC
algorithm:

In practice, the HMC algorithm involves a
numerical integration of the (ordinary) molecular-
dynamics equations and acceptance-rejection steps
to correct for the integration errors. For simplicity
the integration is assumed to be exact in this
section. No acceptancerejection steps are then
required and whether one uses the first- or the
second-order form of the molecular-dynamics
equations makes no difference. The molecular-
dynamics trajectories generated by the algorithm
are smooth segments of a continuous curve in field
space (see figure 3). Along the trajectories, the n-
point autocorrelation functions in the time-
momentum representation,

Aty bop) =0 coltp)), 0€G <, (5.5
may be defined, where the bracket h. i stands for
the average over all trajectories in an infinitely long
simulation. The autocorrelation functions (5.5) only
describe the dynamical properties of the algorithm
in the specified range of times, but the discussion in
the following paragraphs shows that already these
correlation functions are not renormalizable. The
average over trajectories in eq. (5.5) amounts to
taking the average over the initial values of the
field ¢ and its momentum m = Oto. Since these are
distributed according to the equilibrium distribution
(a Gaussian in the case of the momentum), the
average coincides with the ordinary expectation
value. In perturbation theory, the correlation — 12 —
JHEP04(2011)104 functions can therefore be
calculated by solving the (non-stochastic)
molecular-dynamics equations in the range 0 <t <t
with prescribed initial data at t = 0 and by

Page | 4


http://www.jbstonline.com/

ISSN:0976-0172

Mr.M.Uppa Mahesh, Bio sci Tech, Vol 10(4),2022, 01-06
Journal of Bioscience And Technology

computing the expectation value of the product ¢”
(t1, pl) . . . @ (Tn, pan) using the standard
Feynman rules for the correlation functions of the
initial data. In the case of the stochastic molecular
dynamics, the computation of the autoscorelotion
functions in the time-momentum representation can
be organized in the same way. A notable difference
is that the contractions of the noise field give rise to
additional digrams, but since all these diagrams
disappear in the limit p0 — 0, it is clear that the
autocorrelation functions (5.5) are given by

Aol = lim[ gilatttab) e ) (56)
LT )

fig U

where the autocorrelation functions on the right are
those discussed in the previous sections. Note that
the frequency integrals must be performed before
nO is taken to zero, as otherwise one may run into
infrared-singular intermediate expressions. In view
of its relation to the stochastic molecular dynamics,
as expressed through eq. (5.6), and since the
distribution (5.3) remains non-local at p0 = 0, we
are thus led to conclude that also the HMC
algorithm is not renormalizable.

The Langevin limit:

As already mentioned in subsection 2.1, the
stochastic molecular-dynamics equation (2.5) is
equivalent to the Langevin equation in the limit p0
— oo up to a rescaling of the simulation time.2 The
associated n-point autocorrelation functions

Concluding remarks

The HMC algorithm is currently the preferred
simulation algorithm in lattice QCD. In the past
two decades, various improvements were included
in this algorithm, many of them with the aim of
reducing the computational effort required at small
sea-quark masses (see ref. [20] for a recent review).
Its scaling behaviour with respect to the lattice
spacing has not received as much attention so far,
but rapidly becomes an important issue when the
continuum limit is approached. While the
dynamical properties of the HMC algorithm are
well understood in free field theory [13], the
situation in the presence of interactions tends to be
rather more complicated. In particular, certain
lattice artifacts (topology-changing tunnelling
transitions, for example, or unphysical critical
points in the space of bare couplings) can cause
large autocorrelations. The results obtained in this
paper show that even in the absence of such effects
there is no reason to expect that the HMC
algorithm scales essentially as in a theory of free
fields. Evidently, the non-renormalizability of the
algorithm does not imply that it is invalid or
unusable close to the continuum limit, but without
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further insight its scaling behaviour is
unpredictable in interacting theories. The HMC
algorithm and the stochastic molecular dynamics
may conceivably fall into the universality class of
the Langevin equation. Independently of whether
this is the case or not, it may be worth looking for
renormalizable algorithms where the simulation
time has scaling dimension less than 2. Eventually
such algorithms might turn out to be faster than the
HMC algorithm and they would have the advantage
that their efficiency at small lattice spacings is
predictable.
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