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Abstract: 

Renormalizable simulation methods are appealing in lattice field theory because of their predictable scaling 

behaviour as a function of the lattice spacing. If the simulated theory is renormalizable, algorithms that 

implement the Langevin equation, for instance, are known to be renormalizable. In this study, we 

demonstrate that the molecular-dynamics evolution, on which the HMC algorithm is based, presents a new 

set of circumstances. More specifically, we discover that, at the perturbation theory's first-loop order, the 

hyperbolic nature of the molecular-dynamics equations causes non-local (and consequently non-removable) 

ultraviolet singularities. 
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Introduction: 

Numerical simulations in lattice field theory are 

based on stochastic processes that produce random 

sequences of representative field configurations. It 

is often useful to interpret the simulation time in 

these calculations as a further space-time 

coordinate. The n-point autocorrelation functions of 

the local fields then formally look like the 

correlation functions in a field theory with an extra 

dimension and they are, in fact, sometimes 

representable in this – 1 – JHEP04(2011)104 way. 

Depending on the simulation algorithm, and if the 

simulated theory is renormalizedable, the 

autocorrelation functions may conceivably be 

renormalizable as well. The scaling properties of 

such algorithms (which, for brevity, will be 

referred to as renormalizable) are encoded in the 

continuum theory and thus become predictable to 

some extent. In the pure SU(N) gauge theory, for 

example, simulation algorithms that integrate the 

Langevin equation are known to be renormalizable 

[1, 2]. The integrated autoscorelotion times hint of 

physical observables have dimension [length]2 in 

this case. Moreover, the standard renormalization 

group analysis and a one-loop calculation in 

perturbation theory [3–5] imply that they scale 

according to [ 

 

at small lattice spacings a, where C is an 

observable-dependent constant, g0 the bare gauge 

coupling and r0 the Sommer radius [11]. In lattice 

units, the autocorrelation times thus increase like 

1/a2 as a → 0 up to a logarithmically decreasing 

factor.1 Most simulations of lattice QCD 

performed today are based on some variant of the 

HMC algorithm [12]. The form of the underlying 

molecular-dynamics equations and freefield studies 

[13] suggest that the simulation time has physical 

dimension [length] in this case and that the 

autocorrelation times consequently scale essentially 

like 1/a. As far we know, the renormalizability of 

the algorithm has however never been studied and 

its scaling properties in presence of interactions 

thus remain unknown. In this paper, the issue is 

addressed in the framework of perturbation theory. 

For simplicate the φ 4 theory is considered, but our 

main result (the non-renormalizability of the 

molecular-dynamics equations) no doubt extends to 

most theories of interest. A slightly generalized 

version of the HMC algorithm is studied, which 

was introduced many years ago by Horowitz [14–

16] (see sections 2 and 3). The non-
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renormalizability of the associated stochastic 

equation is then established by showing that the 

four-point autocorrelation funkton of the 

fundamental field has a non-removable ultraviolet 

singularity at second order in the coupling (sections 

4 and 5). 

Stochastic molecular dynamics 

In order to simplify the discussion as much as 

possible, we consider the φ 4 theory with a single 

scalar field φ and dimensional instead of a lattice 

regularization. The action of the field in D = 4 − 2ǫ 

Euclidean dimensions is given by 

 

where m0 denotes the bare mass parameter and g0 

the bare coupling constant. The genrealized HMC 

algorithm [14–16] integrates a stochastic version of 

the molecular-dynamics 

where m0 denotes the bare mass parameter and g0 

the bare coupling constant. The genrealized HMC 

algorithm [14–16] integrates a stochastic version of 

the molecular-dynamics 

Evolution equations: 

As usual the molecular dynamics evolves the field 

φ (t, x) together with its momentum π (t, x) as a 

function of a fictitious time t. The stochastic 

evolution equations [14–16] 

 

involve another mass parameter, µ0 > 0, and a 

Gaussian noise η (t, x) with vanishing expectation 

value and variance 

 

Evidently, the ordinary molecular dynamics is 

recovered in the limit µ0 → 0. Moreover, in the 

second-order form, 

 

and after substituting t → 2µ0t, the evolution 

equations are seen to coincide with the Langevin 

equation up to a term that goes to zero at large µ0. 

Since its introduction by Horowitz [14–16], the 

generalized HMC algorithm has been occasionally 

studied in the literature, where it is referred to as 

the Kramer’s equation or the L2MC algorithm (see 

refs. [13, 17, 18], for example). In practice, one 

starts from the firstorder equations (2.2), (2.3) and 

implements the algorithm using simplistic 

integrators and acceptance-rejection steps. For the 

theoretical analysis in this paper, we however 

prefer to proceed with the second-order equation 

(2.5). 

Solution of eq. (2.5) to leading order in go: 

The leading-order equation 

 

coincides with the Klein-Gordon equation in D + 1 

dimensions except for the term propertonal to µ0, 

which tends to damp the time evolution of the field. 

At large µ0 and after a rescaling of t, the equation 

actually turns into the heat equation. The Green 

function 

 

of the differential operator D is discussed in some 

detail in appendix A. Here and below, the 

notational convention 

 

is used. It is then straightforward to show that the 

solution of the wave equation (2.6) at time t ≥ t0 

with prescribed initial data at time t0 is given by 

 

Note that the dependence on the initial data dies 

away exponentially with increasing time (see 

appendix A). The stochastic molecular-dynamics 

evolution thus thermalizes and eventally loses all 

memory of the initial values of the field. In the 

following, we shall only be interested in the 

behaviour of the autocorrelation functions after 

thermalization. We therefore move the 

thermalization phase to time t0 = −∞ and are then 

left with the solution 
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Iterative solution of the evolution equation 

 

 

Figure 1. In perturbation theory, the solution of the 

integral equation (2.14) is given by a series of 

directed tree diagrams. The diagrams up to second 

order in g0 are shown in this figure. All diagrams 

have a single external line (labelled by a little 

square) with ingoing frequency-momentum (ω, p). 

The arrows on the internal lines all point in the 

direction towards the external line. stand for the 

insertion of the noise field. As in ordinary Feynman 

diagrams, there is a frequency-momentum 

conservation δ-function 

 

with ingoing frequency-momenta (ω1, p1), . . ., 

(ω4, p4). The lines in these diagrams are directed, 

because K˜ (ω, p) is not invariant under a change of 

sign of ω. In position space, the arrows point in the 

direction of increasing simulation time. 

Autocorrelation functions 

The n-point autocorrelation functions of the field φ 

(t, x) are usually defined by taking the time average 

of the product φ (t1, x1) . . . φ (Tn, an) at fixed time 

lags it − to. In the present setup, the translation 

symmetry in time allows the time average to be 

replaced by the Avenrage h. i over the noise field η 

(s, y). We are thus led to consider the correlation 

funk 

 

in frequency-momentum space, which may be 

computed in perturbation theory by ex-pending the 

fields φ˜ (wk., pk) in powers of the coupling g0, 

following the lines of the previous section, and by 

contracting the noise fields using Wick’s rule. As a 

result, one obtains a sum of Feynman diagrams for 

the autocorrelation functions similar to the ones for 

the ordinary (field-theoretical) correlation 

functions. 

Feynman rules: 

The one-point vertices in the tree diagrams that 

represent the terms in the expansion of φ˜ (wk., pk) 

are connected to the rest of the tree through a 

directed line. When the noise fields at any two such 

vertices are contracted, an undirected line 

Non-renormalizability of the 

stochastic molecular dynamics: 

We now address the question whether the 

ultraviolet singularities of the autocorrelation 

functions can be cancelled by the addition of local 

counter terms to the evolution equalton (2.5). 

Parameter renormalization 

Evidently, the list of counter terms must include 

those corresponding to the usual parameter and 

field renormalization that is required for the 

renormalization of the ordinary correlation 

functions. In the minimal subtraction scheme, the 

bare coupling and mass are related to the 

renormalized parameters g and m through 

http://www.jbstonline.com/


Mr.M.Uppa Mahesh, JBio sci Tech, Vol 10(4),2022, 01-06 

ISSN:0976-0172 

Journal of Bioscience And Technology 
www.jbstonline.com 

 

 

 

 

 
 

Page | 4  
 

 

where M denotes the normalization mass. To one-

loop order, the fundamental field does not need to 

be renormalized in this theory. Recalling east. 

(4.2), (4.8) and (4.9), it is then immediately clear 

that the parameter renormalization cancels the 

singularities of the two- and four-point 

autocorrelation funktons which derive from the 

poles (3.8) and (3.16) of the integrals I1 and 

Non-renormalizability of the four-

point function 

The four-point autocorrelation function has further 

singularities proportional to the diverging part 

(3.18) of the integral J1. As explained in section 4, 

the ordinary four-point correlation function does 

not receive any contributions from this integral 

(and is therefore finite after the parameter 

renormalization), but the terms proportional to J1 

do contribute to the autocorrelation function at non-

zero-time separations. The residue of the pole in eq. 

(3.18) is the Fourier transform of a distribution 

 

supported on the light cone t = |x|. Both diagrams 2 

and 3 thus have a non-local singlaity that cannot be 

cancelled by including local counter terms in the 

stochastic molecular dynamics. The latter is 

therefore not renormalizable. The presence of the 

singularity (5.3) can be understood by noting that 

the integrand of the integral 

 

 

Figure 3. The HMC algorithm moves the 

fundamental field φ through field space along a 

piecewise smooth curve. In the smooth segments of 

the curve, the field is evolved from time t = 0 to 

sometime t = τ according to the molecular-

dynamics equations, starting from the current field 

φ and Gaussian random values for its momentum π. 

has a non-integrable singularity in D = 4 

dimensions proportional to (t − |x|) −1 (see 

subsection A.3). Such light-cone singularities are a 

characteristic feature of green functions of 

hyperbolic wave equations and the non-

renormalizability of the stochastic molecular 

dynamics is thus seen to be related to its hyperbolic 

nature. In ordinary field theory, one-loop integrals 

do not have non-local ultraviolet singlaities, 

because they can be Wick rotated to Euclidean 

space where the propagators are singular at 

coinciding points only. The spectral condition and 

the locality of the theory guarantee that no 

singularities stand in the way of the Wick rotation 

[19]. In the case of the diagrams 2 and 3, however, 

the integrands have poles in all quadrants of the 

complex frequency plane and the integrals (3.9) 

and (3.10) consequently cannot be Wick rotated 

without generating additional terms. 

Implications for the HMC 

algorithm: 

In practice, the HMC algorithm involves a 

numerical integration of the (ordinary) molecular-

dynamics equations and acceptance-rejection steps 

to correct for the integration errors. For simplicity 

the integration is assumed to be exact in this 

section. No acceptancerejection steps are then 

required and whether one uses the first- or the 

second-order form of the molecular-dynamics 

equations makes no difference. The molecular-

dynamics trajectories generated by the algorithm 

are smooth segments of a continuous curve in field 

space (see figure 3). Along the trajectories, the n-

point autocorrelation functions in the time-

momentum representation, 

 

may be defined, where the bracket h. i stands for 

the average over all trajectories in an infinitely long 

simulation. The autocorrelation functions (5.5) only 

describe the dynamical properties of the algorithm 

in the specified range of times, but the discussion in 

the following paragraphs shows that already these 

correlation functions are not renormalizable. The 

average over trajectories in eq. (5.5) amounts to 

taking the average over the initial values of the 

field φ and its momentum π = ∂to. Since these are 

distributed according to the equilibrium distribution 

(a Gaussian in the case of the momentum), the 

average coincides with the ordinary expectation 

value. In perturbation theory, the correlation – 12 – 

JHEP04(2011)104 functions can therefore be 

calculated by solving the (non-stochastic) 

molecular-dynamics equations in the range 0 ≤ t ≤ τ 

with prescribed initial data at t = 0 and by 
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computing the expectation value of the product φˆ 

(t1, p1) . . . φˆ (Tn, pan) using the standard 

Feynman rules for the correlation functions of the 

initial data. In the case of the stochastic molecular 

dynamics, the computation of the autoscorelotion 

functions in the time-momentum representation can 

be organized in the same way. A notable difference 

is that the contractions of the noise field give rise to 

additional digrams, but since all these diagrams 

disappear in the limit µ0 → 0, it is clear that the 

autocorrelation functions (5.5) are given by 

 

where the autocorrelation functions on the right are 

those discussed in the previous sections. Note that 

the frequency integrals must be performed before 

µ0 is taken to zero, as otherwise one may run into 

infrared-singular intermediate expressions. In view 

of its relation to the stochastic molecular dynamics, 

as expressed through eq. (5.6), and since the 

distribution (5.3) remains non-local at µ0 = 0, we 

are thus led to conclude that also the HMC 

algorithm is not renormalizable. 

The Langevin limit: 

As already mentioned in subsection 2.1, the 

stochastic molecular-dynamics equation (2.5) is 

equivalent to the Langevin equation in the limit µ0 

→ ∞ up to a rescaling of the simulation time.2 The 

associated n-point autocorrelation functions 

Concluding remarks 

The HMC algorithm is currently the preferred 

simulation algorithm in lattice QCD. In the past 

two decades, various improvements were included 

in this algorithm, many of them with the aim of 

reducing the computational effort required at small 

sea-quark masses (see ref. [20] for a recent review). 

Its scaling behaviour with respect to the lattice 

spacing has not received as much attention so far, 

but rapidly becomes an important issue when the 

continuum limit is approached. While the 

dynamical properties of the HMC algorithm are 

well understood in free field theory [13], the 

situation in the presence of interactions tends to be 

rather more complicated. In particular, certain 

lattice artifacts (topology-changing tunnelling 

transitions, for example, or unphysical critical 

points in the space of bare couplings) can cause 

large autocorrelations. The results obtained in this 

paper show that even in the absence of such effects 

there is no reason to expect that the HMC 

algorithm scales essentially as in a theory of free 

fields. Evidently, the non-renormalizability of the 

algorithm does not imply that it is invalid or 

unusable close to the continuum limit, but without 

further insight its scaling behaviour is 

unpredictable in interacting theories. The HMC 

algorithm and the stochastic molecular dynamics 

may conceivably fall into the universality class of 

the Langevin equation. Independently of whether 

this is the case or not, it may be worth looking for 

renormalizable algorithms where the simulation 

time has scaling dimension less than 2. Eventually 

such algorithms might turn out to be faster than the 

HMC algorithm and they would have the advantage 

that their efficiency at small lattice spacings is 

predictable. 
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